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Ref:

• Quantum phase estimation algorithm

• Quantum Phase Estimation but we are not following its illustration, as it is confusing.

1.1 Motivation

Quantum phase is useful in many algorithms due to its relative and modular nature. It is not distinguishable among φκ =
φ0 + 2κπ (κ ∈ Z) so one can do modular arithmetic in calculation, e.g. Quantum Fourier Transform (QFT) and Shor’s Algorithm.

However, phase is relative and cannot be directly measured with measurement gates. For example, |+〉 and |−〉 both measure
50-50 chance of a 0 and 1, but their phases differ by π.

Quantum Phase Estimation (QPE) is a process to measure how much phase change an operator U effects on its eigenstate |ψ〉. In
other words, QPE is to measure the eigenvalue of U given an eigenstate.

1.2 Phase Saving

1.2.1 Modular Arithmetic

In this context, Θ is the count of 2π cycles, a "digitised cycle phase". Θ = 1 is a phase of 2π. Fractional phase is represented in
decimal or binary. e.g. π/4 = 2π/8 is presented as 0.125 in decimal or [0.001] in binary.

For an angular phase φ, the cycle phase Θ = φ/2π. We further define φm ≡ 2π/m, which is a unit of 1/m cycle.

jφm and kφm is in phase if and only if j ≡ k (mod m).

Proof: j ≡ k (mod m) ⇔ j = k + κm ⇔ jφm = kφm + κmφm = kφm + κm · 2π/m = kφm + 2κπ.

1.2.2 Eigenvalue as Phase

Given a unitary U and one of its eigenstates |ψ〉, the eigenvalue would be a unit-length complex number, or a phase. We have
U |ψ〉 = e2πiΘ |ψ〉, where Θ ∈ [0, 1).

The QPE algorithm estimates the value of Θ. In other words, it is to find the eigenvalue of a unitary operator, given an eigenstate.

The strategy is to have a "measuring" register |x〉 and an eigenstate register |ψ〉. By applying an x-controlled U to |ψ〉 one would
"modulate" the phase 2πiΘ into |x〉. Measuring |x〉 would give a bit pattern approximating Θ. The more qubits in |x〉, the more
accurate the approximation is.

To illustrate, let cU j be the q-controlled U j operation. U j |ψ〉 = e2πi·jΘ |ψ〉 .

When |q〉 is initialised to |+〉, cU j (|q〉 ⊗ |ψ〉) = 1√
2

(
|0〉 |ψ〉+ |1〉 e2πi·jΘ |ψ〉

)
= 1√

2

(
|0〉+ e2πi·jΘ |1〉

)
|ψ〉 .

You can see the "kick back" of the phase change e2πi·jΘ from |ψ〉 to |x〉. This is not surprising given that phase is only relative. The
trick is that we use |ψ〉 as a common reference that all qubits in |x〉 is relative to, such that there are phases differences built up
among the qubits qr .

When we apply the qr-controlled U2r
to |ψ〉, as |ψ〉 is an eigenstate of U, it will shift a phase of 2rΘ, which will reflect on qr given

the common reference.

The measuring register |x〉will build up a pattern of ∑n
r=0 2rΘ. Such "phase modulation" can be read out by the inverse Quantum

Fourier Transform QFT−1.
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1.2.3 Formulation

To measure |ψ〉 with n qubits, we apply a successive |+〉 controlled U2r to |ψ〉 , where r ∈ [0, n− 1].

Let the measuring register be |x〉 = |qn−1qn−2 . . . q1q0〉, and |k〉 is standard basis vector with k being the numerical value of
qn−1 . . . q0.

i.e. |x〉 = [x0, x1, . . . , xN−1]
T = ∑N−1

k=0 xk |k〉 , where N = 2n.

Note: While there are only n qubits of qr , there are N = 2n states xk |k〉, each xk is represented as a unique pattern of qn−1 . . . q0.

Now let crU2r |ψ〉 be a controlled U2r
operation on |ψ〉 with qr being the control qubit. |x〉 was initialised to 1√

N
(|0〉+ |1〉)⊗n .

(|ψ〉 is omitted in the following to emphasise the phase change on |x〉.)

After the operation, x will become

(
n

∏
r=1

⊗ cn−rU2(n−r)

)
1√
N

(|0〉+ |1〉)⊗n

=
1√
N

(
|0〉+ e2πi·2n−1Θ |1〉

)
⊗
(
|0〉+ e2πi·2n−2Θ |1〉

)
⊗ . . .⊗

(
|0〉+ e2πi·2Θ |1〉

)
⊗
(
|0〉+ e2πi·Θ |1〉

)
=

1√
N

N−1

∑
k=0

e2πi·kΘ |k〉 .

This is very similar to QFT (Quantum Fourier Transform). If we apply FN to a basis state |q〉,

FN |q〉 =
1√
N

n

∏
r=1

⊗
(
|0〉+ e2πi q·2−r |1〉

)

=
1√
N

(
|0〉+ e2πi q·2−1 |1〉

)
⊗
(
|0〉+ e2πi q·2−2 |1〉

)
⊗ . . .⊗

(
|0〉+ e2πi q·2−n+1 |1〉

)
⊗
(
|0〉+ e2πi q·2−n |1〉

)
=

1√
N

(
|0〉+ e2πi·2n−1(q/N) |1〉

)
⊗
(
|0〉+ e2πi·2n−2(q/N) |1〉

)
⊗ . . .⊗

(
|0〉+ e2πi·2(q/N) |1〉

)
⊗
(
|0〉+ e2πi·(q/N) |1〉

)
= 1√

N ∑N−1
k=0 e2πi·k(q/N) |k〉 .

By observation of |x〉 vs FN |q〉, we can see that Θ ∼ (q/N). In other words, |x〉 is "modulated" with the phase from |ψ〉.

So we can use QFT−1 to reverse the process to find the Θ pattern. The larger N is, the higher the precision of approximating Θ
with q/N.

1.2.4 Visualisation

If we initialise the measuring register |x〉 to |+〉⊗ n, it will be an unbiased superposition of 1√
N ∑N−1

k=0 |k〉 .

All standard basis states |k〉 are of the same "baseline" phase of zero. |x〉 = 1√
N ∑N−1

k=0 e2πi·0 |k〉 .

After the qr-controlled U2r
operation, a phase is built up: |x〉 = 1√

N ∑N−1
k=0 e2πi·kΘ |k〉 .

So the originally zero rotation from |0〉 to |N − 1〉, now it is spiraling through the states, adding a Θ phase per state in the
numerical rank.

When F−1
N is operating on |x〉, all rows would add up to zero, except for the row with q/N equal (or close) to Θ. Such row will

add up to unity (or close). It is like the resonance in the continuous Fourier Transform, in which the phase in |x〉 "resonances"
with |ξ〉q, the qth column of FN , resulting in state |q〉.

Recall |x〉 =
(

1√
N ∑N−1

k=0 e2πi·kΘ |k〉
)

. Because FN |q〉 ≈ |x〉 , We have F−1
N |x〉 ≈ |q〉 .
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1.3 Examples

Useful things:

Rx(πΘ) =

[
cos πΘ/2 −i sin πΘ/2
−i sin πΘ/2 cos πΘ/2

]
.

Rx(π/2) = 1√
2

[
1 −i
−i 1

]
= −i

√
X, Rx(π) =

[
0 −i
−i 0

]
= −iX, Rx(2π) =

[
−1 0
0 −1

]
= −I, Rx(4π) =

[
1 0
0 1

]
= I.

F2 = 1√
2

[
1 1
1 ω1

]
= 1√

2

[
1 1
1 −1

]
= H. F−1

2 = 1√
2

[
1 1
1 ω1

]
= 1√

2

[
1 1
1 −1

]
= H.

F4 = 1√
4


1 1 1 1
1 ω2 ω2

2 ω3
2

1 ω2
2 ω4

2 ω6
2

1 ω3
2 ω6

2 ω9
2

 = 1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

F−1
4 = 1√

4


1 1 1 1
1 ω2 ω2

2 ω3
2

1 ω2
2 ω4

2 ω6
2

1 ω3
2 ω6

2 ω9
2

 = 1
2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

1.3.1 1-Qubit Register

Case n = 1, U = Rx(π), N = 2n = 2.

When |ψ〉 = |+〉 , Rx(π) |ψ〉 = −i |+〉 , Θ+ = 0.75 = [0.11].

When |ψ〉 = |−〉 , Rx(π) |ψ〉 = i |−〉 , Θ− = 0.25 = [0.01].

|x〉 was initialised to 1√
2
(|0〉+ |1〉) , which is irrespective of |ψ〉. After the operation, |x〉 is changed.

When |ψ〉 = |+〉 :

(c0Rx(π)) |x〉 |ψ〉 = (c0Rx(π)) 1√
2
(|0〉+ |1〉) |+〉 = 1√

2
(|0〉 |+〉+ |1〉 Rx(π) |+〉) = 1√

2
(|0〉 |+〉 − i |1〉 |+〉) = 1√

2
(|0〉 − i |1〉) |+〉

= 1√
2

(
|0〉+ e2πi·1×0.75 |1〉

)
|+〉 = 1√

2 ∑1
k=0 e2πi·k×0.75 |k〉 |+〉 =

[ 1√
2

−i 1√
2

]
⊗ |+〉 .

F−1
2 |x〉 = H

[ 1√
2

−i 1√
2

]
= 1

2

[
1− i
1 + i

]
. Measuring this will give you half a chance of 0 and 1.

When |ψ〉 = |−〉 :

|x〉 |ψ〉 = (c0Rx(π)) 1√
2
(|0〉+ |1〉) |−〉 = 1√

2
(|0〉 |−〉+ |1〉 Rx(π) |−〉) = 1√

2
(|0〉 |−〉+ i |1〉 |−〉) = 1√

2
(|0〉+ i |1〉) |−〉

= 1√
2

(
|0〉+ e2πi·1×0.25 |1〉

)
|−〉 = 1√

2 ∑1
k=0 e2πi·k×0.25 |k〉 |−〉 =

[ 1√
2

i 1√
2

]
⊗ |−〉 .

F−1
2 |x〉 = H

[ 1√
2

i 1√
2

]
= 1

2

[
1 + i
1− i

]
. Measuring this will give you half a chance of 0 and 1.

1.3.2 2-Qubit Register

Let us increase the number of qubits to 2 and see if it gives a better approximation.

Case n = 2, U = Rx(π), N = 2n = 4.

U and |ψ〉 have not changed, so we can recall: Θ+ = 0.75 = [0.11] and Θ− = 0.25 = [0.01].

|x〉 was initialised to 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉) . We omit |ψ〉 here but please be reminded that Rx is on |ψ〉, not on |1〉.
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When |ψ〉 = |+〉 :

|x〉 = (c1Rx(2π))
1√
2
(|0〉+ |1〉)⊗ (c0Rx(π))

1√
2
(|0〉+ |1〉) = 1√

2
(|0〉 − |1〉)⊗ 1√

2
(|0〉 − i |1〉)

=
1√
4

(
|0〉+ e2πi·2×0.75 |1〉

)
⊗
(
|0〉+ e2πi·1×0.75 |1〉

)
=

1√
4

3

∑
k=0

e2πi·k×0.75 |k〉 = 1√
4


1
−i
−1

i

 .

F−1
4 |x〉 = 1√

4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 1√
4


1
−i
−1

i

 =


0
0
0
1

 . Measuring this will give you |11〉 with certainty, which means Θ = 0.75 =

[0.11].

When |ψ〉 = |−〉 :

|x〉 = (c1Rx(2π))
1√
2
(|0〉+ |1〉)⊗ (c0Rx(π))

1√
2
(|0〉+ |1〉) = 1√

2
(|0〉 − |1〉)⊗ 1√

2
(|0〉+ i |1〉)

=
1√
4

(
|0〉+ e2πi·2×0.25 |1〉

)
⊗
(
|0〉+ e2πi·1×0.25 |1〉

)
=

1√
4

3

∑
k=0

e2πi·k×0.25 |k〉 = 1√
4


1
i
−1
−i

 .

F−1
4 |x〉 = 1√

4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 1√
4


1
i
−1
−i

 =


0
1
0
0

 . Measuring this will give you |01〉 with certainty, which means Θ = 0.25 =

[0.01].

1.4 "Recovery" of Θ from |x〉

Now, let us see if F−1
N |q〉 =

1√
N ∑N−1

k=0 e−2πi·k(q/N) |k〉 would recover Θ.

A recap on QFT:

Given ωn = e2πi/N , yk =
1√
N

N−1

∑
j=0

xjω
jk
n and ω jk = ωkj, we have |y〉 = FN |x〉 , F−1

N |y〉 = |x〉 , and xj =
1√
N

N−1

∑
k=0

ykω
−jk
n .

This makes sense as yk =
1√
N

N−1

∑
j=0

(
1√
N

N−1

∑
k′=0

yk′ω
−jk′
n

)
ω

jk
n =

1
N

N−1

∑
k′=0

yk′

(
N−1

∑
j=0

ω
−jk′
n ω

jk
n

)
=

1
N

N−1

∑
k′=0

yk′

(
N−1

∑
j=0

ω
j(k−k′)
n

)
.

The ωn terms will add up to zero when k 6= k′, and add up to N when k = k′. So yk =
1
N

yk N = yk .

. . .

Given |x〉 = 1√
N

N−1

∑
j=0

e2πi·jΘ |j〉, we can express |x〉 = 1√
N

N−1

∑
j=0

xj |j〉 , where xj = e2πi·jΘ.

|y〉 = 1√
N ∑N−1

k=0 yk |k〉 , where yk = 1√
N ∑N−1

j=0 xjω
jk
n .

Here is the circuit from Wikipedia. The top line is the MSB.
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https://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/PhaseCircuit-crop.svg/750px-PhaseCircuit-crop.svg.png

The QFT−1
n (Inverse Quantum Fourier Transform) on the right is as following.

Note: Rn gates in QFTn are phase shift by 2π/2n. In QFT−1
n , the phase shift is negative, i.e. exp

−2πi [0.

n︷︸︸︷
0..1 ]

 . So R2 is S†,

R3 is T† and so on.

https://upload.wikimedia.org/wikipedia/commons/thumb/6/61/Q_fourier_nqubits.png/1050px-Q_fourier_nqubits.png
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